7,781 research outputs found

    Controlling the composition of a confined fluid by an electric field

    Full text link
    Starting from a generic model of a pore/bulk mixture equilibrium, we propose a novel method for modulating the composition of the confined fluid without having to modify the bulk state. To achieve this, two basic mechanisms - sensitivity of the pore filling to the bulk thermodynamic state and electric field effect - are combined. We show by Monte Carlo simulation that the composition can be controlled both in a continuous and in a jumpwise way. Near the bulk demixing instability, we demonstrate a field induced population inversion in the pore. The conditions for the realization of this method should be best met with colloids, but being based on robust and generic mechanisms, it should also be applicable to some molecular fluids.Comment: 9 pages, 5 figure

    Universality of Tip Singularity Formation in Freezing Water Drops

    Get PDF
    A drop of water deposited on a cold plate freezes into an ice drop with a pointy tip. While this phenomenon clearly finds its origin in the expansion of water upon freezing, a quantitative description of the tip singularity has remained elusive. Here we demonstrate how the geometry of the freezing front, determined by heat transfer considerations, is crucial for the tip formation. We perform systematic measurements of the angles of the conical tip, and reveal the dynamics of the solidification front in a Hele-Shaw geometry. It is found that the cone angle is independent of substrate temperature and wetting angle, suggesting a universal, self-similar mechanism that does not depend on the rate of solidification. We propose a model for the freezing front and derive resulting tip angles analytically, in good agreement with observations.Comment: Letter format, 5 pages, 3 figures. Note: authors AGM and ORE contributed equally to the pape

    Emergence of pulled fronts in fermionic microscopic particle models

    Full text link
    We study the emergence and dynamics of pulled fronts described by the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic reaction-diffusion process A + A A$ on the lattice when only a particle is allowed per site. To this end we identify the parameter that controls the strength of internal fluctuations in this model, namely, the number of particles per correlated volume. When internal fluctuations are suppressed, we explictly see the matching between the deterministic FKPP description and the microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a Rapid Communicatio

    Mass models of NGC 6624 without an intermediate-mass black hole

    Get PDF
    An intermediate-mass black hole (IMBH) was recently reported to reside in the centre of the Galactic globular cluster (GC) NGC 6624, based on timing observations of a millisecond pulsar (MSP) located near the cluster centre in projection. We present dynamical models with multiple mass components of NGC 6624 - without an IMBH - which successfully describe the surface brightness profile and proper motion kinematics from the Hubble Space Telescope (HST) and the stellar mass function at different distances from the cluster centre. The maximum line-of-sight acceleration at the position of the MSP accommodates the inferred acceleration of the MSP, as derived from its first period derivative. With discrete realizations of the models we show that the higher-order period derivatives - which were previously used to derive the IMBH mass - are due to passing stars and stellar remnants, as previously shown analytically in literature. We conclude that there is no need for an IMBH to explain the timing observations of this MSP.Comment: 8 pages, 7 figures, MNRAS. Updated to match final journal styl

    Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff

    Get PDF
    Recently it has been shown that when an equation that allows so-called pulled fronts in the mean-field limit is modelled with a stochastic model with a finite number NN of particles per correlation volume, the convergence to the speed vv^* for NN \to \infty is extremely slow -- going only as ln2N\ln^{-2}N. In this paper, we study the front propagation in a simple stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The lattice and finite particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the front, while the average front behind it ``crosses over'' to a uniformly translating solution. In this formulation, the effect of stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the advancement of the ``foremost bin''. We derive expressions of these probability distributions by matching the solution of the far tip with the uniformly translating solution behind. This matching includes various correlation effects in a mean-field type approximation. Our results for the probability distributions compare well to the results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of NN than it is required to have the ln2N\ln^{-2}N asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.

    From the stress response function (back) to the sandpile `dip'

    Full text link
    We relate the pressure `dip' observed at the bottom of a sandpile prepared by successive avalanches to the stress profile obtained on sheared granular layers in response to a localized vertical overload. We show that, within a simple anisotropic elastic analysis, the skewness and the tilt of the response profile caused by shearing provide a qualitative agreement with the sandpile dip effect. We conclude that the texture anisotropy produced by the avalanches is in essence similar to that induced by a simple shearing -- albeit tilted by the angle of repose of the pile. This work also shows that this response function technique could be very well adapted to probe the texture of static granular packing.Comment: 8 pages, 8 figures, accepted version to appear in Eur. Phys. J.

    Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts

    Full text link
    We present a (heuristic) theoretical derivation for the scaling of the diffusion coefficient DfD_f for fluctuating ``pulled'' fronts. In agreement with earlier numerical simulations, we find that as NN\to\infty, DfD_f approaches zero as 1/ln3N1/\ln^3N, where NN is the average number of particles per correlation volume in the stable phase of the front. This behaviour of DfD_f stems from the shape fluctuations at the very tip of the front, and is independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.

    The Universal Gaussian in Soliton Tails

    Full text link
    We show that in a large class of equations, solitons formed from generic initial conditions do not have infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it possible to treat solitons as localized, individual objects. For the case of the KdV equation, we show how the Gaussian decay emerges in the inverse scattering formalism.Comment: 4 pages, 2 figures, revtex with eps

    Duality in interacting particle systems and boson representation

    Full text link
    In the context of Markov processes, we show a new scheme to derive dual processes and a duality function based on a boson representation. This scheme is applicable to a case in which a generator is expressed by boson creation and annihilation operators. For some stochastic processes, duality relations have been known, which connect continuous time Markov processes with discrete state space and those with continuous state space. We clarify that using a generating function approach and the Doi-Peliti method, a birth-death process (or discrete random walk model) is naturally connected to a differential equation with continuous variables, which would be interpreted as a dual Markov process. The key point in the derivation is to use bosonic coherent states as a bra state, instead of a conventional projection state. As examples, we apply the scheme to a simple birth-coagulation process and a Brownian momentum process. The generator of the Brownian momentum process is written by elements of the SU(1,1) algebra, and using a boson realization of SU(1,1) we show that the same scheme is available.Comment: 13 page
    corecore